Unit 1 Study Guide

1) Can you find the factors of a number? Using Arrays? Using the divisibility rules?
a. Math journal pages

- p. 5
- p. 10
- p. 13-14
b. Study Links
- 1.2
- 1.3
- 1.4
- 1.5
c. Extra practice pages from "Unit 1" on our website
- 1.2
- 1.3
- 1.5
d. SRB pages
- p. 10
e. Try playing Factor Captor

2) Can you rename numbers written in exponential notation as repeated factor expressions?
(Ex: $3^{4}-->3 \times 3 \times 3 \times 3$) How about the opposite? $2 \times 2 \times 2-->2^{3}$
a. SRB p. 6
b. Math journal pages

- p. 20-21
c. Study Link
- 1.7
- 1.9

3) Can you find and identify prime and composite numbers?
a. SRB

- p. 12
b. Math journal pages
-p. 16-17
c. Study Link
- 1.6
d. Extra practice pages from "Unit 1" on our website
- 1.6

4) Can you read and write whole numbers through billions and decimals through thousandths?
a. Math Journal (these are all problems in a math box)

- p. 4
- p. 11
- p. 15
- p. 22
-p. 27
- p. 28

5) Can you find the prime factorization for a number?
a. SRB p. 12
b. Math journal pages

- p. 25-26
c. Study Link
- 1.9
d. Extra Practice from Unit 1 on our website - 1.9

Solving Multiplication Number Stories

For each number story:

- Fill in a multiplication/division diagram. Write ? for the number you need to find. Write the numbers you already know.
- Write a number model.
- Use counters or draw pictures to help you find the answer.
- Record the answer with its unit.

1. Yosh has 8 boxes of mini stock cars. There are 10 stock cars in each box. How many stock cars does he have?

Number model: \qquad
Answer: \qquad
2. There are 100 paper clips in each package. How many paper clips are in 7 packages?

Number model: \qquad
Answer: \qquad
(unit)
3. There are 40 books on each shelf. How many books are on 9 shelves?

Number model: \qquad

shelves	books per shelf	books in all

Answer: \qquad

packages	clips per package	clips in all

\qquad
\qquad
\qquad

Solving Multiplication Number Stories

1. Solve.
a. $7+7+7+7+7+7=$ \qquad
b. $8+8=$ \qquad
c. $5+5+5+5+5=$ \qquad
2. There are 10 birds in each tree. There are 7 trees.
How many birds are there in all?

trees	birds per tree	birds in all

Number model: \qquad
birds
5. There are 30 students in each class. There are 9 classes.
How many students are there in all?

classes	students per class	students in all

Number model: \qquad students
2. Draw an array to help you find the product. Use Xs to draw your array.
$9 \times 3=$ \qquad
4. There are 40 books in each box. There are 3 boxes.
How many books are there in all?

boxes	books per box	books in all

Number model: \qquad
books
6. Make up and solve your own Review Box.
\qquad
\qquad
\qquad

Equal-Groups Riddles

1. Solve.
a. $8+8+8+8=$ \qquad
b. $4+4+4=$ \qquad
c. $3+3+3+3+3+3+3=$ \qquad
2. If you put me into 7 equal groups with 2 in each group and 2 are left over, what number am I?

Draw a picture of what you did.
2. Draw an array to help you find the product. Use Xs to draw your array.
$5 \times 5=$ \qquad
4. If you put me into 5 equal groups with 5 in each group and 4 are left over, what number am I?

Draw a picture of what you did.
5. I am a number between 30 and 40 . When you put me into 8 equal groups, there is an even number in each group and 1 is left over. What number am I?
6. Write your own equal-groups riddle. Draw a picture to show how you would solve it.

Factor Pairs for Prime and Composite Numbers

1. In the table below, list all the factor pairs of each number.

Number	Factor Pairs
2	$/$ and 2
3	
4	
5	
6	
9	
10	
11	
12	

2. Name a number in the table above that is not a prime number. Explain how you know it is not prime.
\qquad
\qquad
3. Name at least three prime numbers that are not in the table above.
\qquad
4. Choose one of your answers from Problem 3. Explain how you know it is a prime number.
\qquad
\qquad
\qquad

Factor Pairs for Prime and Composite Numbers

Arrays for Prime and Composite Numbers

You can use arrays to help you determine whether a counting number is prime or composite. If there is only one array for a number, the number has only two factors, so it is a prime number. If two or more arrays can be made for a number, then it is a composite number.

Example: Two different arrays can be made for 6 .
$1,2,3$, and 6 are factors of 6 . 6 is a composite number.

Example: Only one array can be made for 5.

1 and 5 are factors of 5 .
5 is a prime number.

1. On centimeter grid paper, draw as many arrays as you can for each of the following numbers: $3,9,11,13,18,21,30,33,54$.
Label each array with a number model and its turn-around fact, as shown in the examples above.
2. Use the arrays to decide if each number is prime or composite.

Write the numbers on the appropriate line below.
Prime numbers: \qquad
Composite numbers: \qquad
3. There are 20 prime numbers that are greater than 11 , but less than 100. List them below.
\qquad
\qquad
\qquad

Arrays for Prime and Composite Numbers

1. List all the factor pairs of the number. 25 \qquad	2. Draw as many arrays as you can for 2. Is 2 a prime number or a composite number?
3. Draw as many arrays as you can for 8 . Is 8 a prime number or a composite number?	4. Describe how you solved Question 3.

\qquad

Arrays for Prime and Composite Numbers

1. Draw as many arrays as you can for 10 .

Is 10 a prime number or a composite number?
2. Draw as many arrays as you can for 7 .

Is 7 a prime number or a composite number?

Factor Pairs

1. a. Use counters to make all possible arrays for the number 8 .
b. Write a number model for each array you make.
c. List all the whole-number factors of 8 .

2. Use counters to help you find all the number models and factors for each number.

Number	Number Models with 2 Factors	All Possible Factors
9		
15		
11		
20		
18		

Factor Rainbows

When listing the factors of a number, you need to be certain that you have included all the factors in your list. Creating a factor rainbow is one way to do this. A factor rainbow is an organized list of factor pairs.

To the right is the factor rainbow for 36 . Because 36 is a square number, one of the factors (6) is paired with itself.

Complete a factor rainbow for each number.

1. 56
2.

48
3.
81
4.
72

Factor Trees

Make factor trees and find the prime factorization for the following numbers.
Example: 28

$28=2 * 2 * 7$

1. 44
2. 56
$56=$ \qquad
3. 18
4. 30

$$
18=
$$

\qquad
$30=$ \qquad
5. a. Circle the number that has the most prime factors.
63
32
49
100
b. Which has the fewest prime factors? \qquad

Name: \qquad
\qquad Time: \qquad

Factor Trees

1. Is 9 composite or prime? Explain. \qquad \qquad \qquad \qquad	2. Make a factor tree and write the prime factorization. 54 Prime factorization: \qquad
3. Make a factor tree and write the prime factorization. 70 Prime factorization:	4. Explain how you solved Question 3.

Exploring Exponents

The number sentences below contain exponential and repeated-factor notations. Find the pattern and complete the number sentences.

1. $3 * 3=3^{2}$
$3 * 3 * 3=3^{3}$
$3 * 3 * 3 * 3=3^{4}$
2. $5 * 5=5^{2}$
$5 * 5 * 5=5^{3}$
$5 * 5 * 5 * 5=5^{4}$
3. $18 * 18=18^{2}$
$18 * 18 * 18=18^{3}$
$18 * 18 * 18 * 18=18^{4}$
4. $7 * 7=$ \qquad
\qquad $=7^{3}$
$7 * 7 * 7 * 7=$ \qquad
5. $4 * 4 * 4 * 4 * 4 * 4 * 4=$ \qquad
6. $2^{6}=$ \qquad
7. If you were going to explain to someone how to use exponents to write a number, what would you say?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Write the repeated-factor expression or the exponential notation.
8. $28^{4}=$ \qquad
9. $309 * 309 * 309 * 309 * 309=$ \qquad
10. $2^{3} * 2^{3}=$ \qquad

Reviewing Place Value through 5-Digit Numbers

Ten-Thousands	Thousands	Hundreds	Tens	Ones

Complete.

1. The 9 in 4,965 stands for 9 hundreds or 900
2. The 4 in 48,215 stands for 4 \qquad or \qquad
3. The 0 in 72,601 stands for 0 \qquad or \qquad .
4. The 7 in 87,629 stands for 7 \qquad or \qquad _.
5. The 8 in 38,291 stands for 8 \qquad or \qquad
6. The 3 in 5,413 stands for 3 \qquad or \qquad

Follow the steps to write each number.
7. Write 6 in the tens place. Write 4 in the ten-thousands place. Write 9 in the ones place. Write 0 in the hundreds place. Write 1 in the thousands place.
9. Write 6 in the hundreds place.

Write 4 in the tens place.
Write 9 in the ten-thousands place.
Write 0 in the ones place.
Write 1 in the thousands place.
8. Write 6 in the ones place.

Write 4 in the thousands place.
Write 9 in the hundreds place.
Write 0 in the tens place.
Write 1 in the ten-thousands place.
10. Write 6 in the ten-thousands place.

Write 4 in the hundreds place.
Write 9 in the tens place.
Write 0 in the thousands place.
Write 1 in the ones place.
\qquad
\qquad
\qquad

Reviewing Place Value through 5-Digit Numbers

1. In the number 3,845 ,
the 4 means \qquad .
the 5 means \qquad .
the 3 means \qquad .
the 8 means \qquad .
2. Write 4 in the ten-thousands place.

Write 7 in the thousands place.
Write 3 in the hundreds place.
Write 1 in the tens place.
Write 6 in the ones place.
\qquad , \qquad
5. a. The 8 in 35,846 stands for 8
\qquad Or \qquad .
b. The 0 in 50,981 stands for 0
\qquad or \qquad .
2. Write the number that has

3 in the ones place
7 in the thousands place
4 in the tens place
1 in the hundreds place
\qquad , \qquad
4. Write 8 in the tens place.

Write 2 in the thousands place.
Write 3 in the ones place.
Write 5 in the hundreds place.
Write 7 in the ten-thousands place.
\qquad , \qquad
6. a. The 4 in 89,504 stands for 4
\qquad or .
b. The 9 in 91,688 stands for 9
\qquad or \qquad .
\qquad
\qquad
\qquad

Reviewing Place Value through 5-Digit Numbers

1. Write 1 in the tens place.

Write 2 in the ones place.
Write 4 in the thousands place.
Write 3 in the hundreds place.
Write 7 in the ten-thousands place.
\qquad ,
2. Write 1 in the ones place.

Write 9 in the thousands place.
Write 5 in the tens place.
Write 2 in the ten-thousands place.
Write 7 in the hundreds place.
\qquad ,
3. a. The 1 in 23,415 stands for 1 \qquad or \qquad .
b. The 2 in 29,843 stands for 2 \qquad or \qquad .
c. The 7 in 85,720 stands for 7 \qquad or \qquad .
d. The 3 in 44,513 stands for 3 \qquad or \qquad .
e. The 8 in 91,578 stands for 8 \qquad or \qquad .
f. The 4 in 14,029 stands for 4 \qquad or \qquad .

