\qquad
\qquad
\qquad

Reviewing Place Value through 5-Digit Numbers

1. In the number 3,845 ,
the 4 means \qquad .
the 5 means \qquad .
the 3 means \qquad .
the 8 means \qquad .
2. Write 4 in the ten-thousands place.

Write 7 in the thousands place.
Write 3 in the hundreds place.
Write 1 in the tens place.
Write 6 in the ones place.
\qquad , \qquad
\qquad
5. a. The 8 in 35,846 stands for 8
\qquad or \qquad .
b. The 0 in 50,981 stands for 0
\qquad or \qquad .
2. Write the number that has

3 in the ones place
7 in the thousands place
4 in the tens place
1 in the hundreds place
\qquad , \qquad
4. Write 8 in the tens place.

Write 2 in the thousands place.
Write 3 in the ones place.
Write 5 in the hundreds place.
Write 7 in the ten-thousands place.
\qquad , \qquad
6. a. The 4 in 89,504 stands for 4
\qquad or .
b. The 9 in 91,688 stands for 9
\qquad or \qquad .
\qquad
\qquad
\qquad

Reviewing Place Value through 5-Digit Numbers

1. Write 1 in the tens place.

Write 2 in the ones place.
Write 4 in the thousands place.
Write 3 in the hundreds place.
Write 7 in the ten-thousands place.
\qquad ,
2. Write 1 in the ones place.

Write 9 in the thousands place.
Write 5 in the tens place.
Write 2 in the ten-thousands place.
Write 7 in the hundreds place.
\qquad ,
3. a. The 1 in 23,415 stands for 1 \qquad or \qquad .
b. The 2 in 29,843 stands for 2 \qquad or \qquad .
c. The 7 in 85,720 stands for 7 \qquad or \qquad .
d. The 3 in 44,513 stands for 3 \qquad or \qquad .
e. The 8 in 91,578 stands for 8 \qquad or \qquad .
f. The 4 in 14,029 stands for 4 \qquad or \qquad .

Reviewing Place Value through 5-Digit Numbers

Ten-Thousands	Thousands	Hundreds	Tens	Ones

Complete.

1. The 9 in 4,965 stands for 9 hundreds or 900
2. The 4 in 48,215 stands for 4 \qquad or \qquad
3. The 0 in 72,601 stands for 0 \qquad or \qquad .
4. The 7 in 87,629 stands for 7 \qquad or \qquad _.
5. The 8 in 38,291 stands for 8 \qquad or \qquad
6. The 3 in 5,413 stands for 3 \qquad or \qquad

Follow the steps to write each number.
7. Write 6 in the tens place. Write 4 in the ten-thousands place. Write 9 in the ones place. Write 0 in the hundreds place. Write 1 in the thousands place.
9. Write 6 in the hundreds place.

Write 4 in the tens place.
Write 9 in the ten-thousands place.
Write 0 in the ones place.
Write 1 in the thousands place.
8. Write 6 in the ones place.

Write 4 in the thousands place.
Write 9 in the hundreds place.
Write 0 in the tens place.
Write 1 in the ten-thousands place.
10. Write 6 in the ten-thousands place.

Write 4 in the hundreds place.
Write 9 in the tens place.
Write 0 in the thousands place.
Write 1 in the ones place.

Understanding Place Value through 1,000,000

Complete.

1. In 307,584 ,

3 is worth 300,000
7 is worth \qquad

4 is worth \qquad
3. In 280,743,

8 is worth \qquad
2 is worth \qquad
4 is worth \qquad
5. In 207,653,

5 is worth \qquad

6 is worth \qquad

7 is worth \qquad
7. $\ln 381,062$,

1 is worth \qquad

6 is worth \qquad
3 is worth \qquad
2. $\ln 7,209$,

7 is worth \qquad
0 is worth \qquad
2 is worth \qquad
4. In 10,837 ,

8 is worth \qquad
1 is worth \qquad
0 is worth \qquad
6. $\ln 456,789$,

4 is worth \qquad

9 is worth \qquad
5 is worth \qquad
8. In 903,578 ,

5 is worth \qquad

0 is worth \qquad
3 is worth \qquad
\qquad
\qquad
\qquad

Understanding Place Values through 1,000,000

1. In the number 1,596 , the 9 means \qquad the 6 means \qquad the 1 means \qquad the 5 means \qquad	2. Write the number that has 4 in the hundreds place 6 in the thousands place 1 in the ones place 5 in the tens place \qquad \qquad \qquad
3. In 489,103, 9 is worth \qquad 3 is worth \qquad 4 is worth \qquad	4. $\operatorname{In} 134,785$, 3 is worth \qquad 8 is worth \qquad 7 is worth \qquad
5. In 980,167, 6 is worth \qquad 1 is worth \qquad 9 is worth \qquad	6. Make up and solve your own Review Box.

Add Three or More 2- and 3-Digit Numbers to Solve Number Stories

Solve. Show your work in the space provided.

1. Ellen bought gum for 25 cents, pear juice for 55 cents, grape juice for 45 cents, and orange juice for 65 cents.
How much money did she spend?
Number model:

Answer the question: \qquad
2. Mrs. Lee drove from Houston, Texas to Wichita, Kansas. On the first day, she drove 247 miles. On the second day, she drove 205 miles. On the third day, she drove 158 miles and arrived in Wichita. How many miles did she drive in all?

Total		
Part	Part	Part

Number model:

Answer the question: \qquad
\qquad
\qquad Time: \qquad

Add Three or More 2- and 3-Digit Numbers to Solve Number Stories

1. Jerome likes to eat sunflower seeds. He ate 18 seeds on Monday, 24 seeds on Tuesday, 60 seeds on Wednesday, and 36 seeds on Thursday. How many grapes did he eat in all?

2. The Weston family drove from Santa Fe, New Mexico to Topeka, Kansas. They drove 116 miles on the first day, 235 miles on the second day, and 351 miles on the third day. How many miles did they drive in all?
\qquad

Total		
Part	Part	Part

\qquad
\qquad
\qquad

Add or Subtract Decimals Using a Savings Account

1. In the number 27.364 :
the 3 means \qquad .
the 4 means \qquad .
the 2 means \qquad .
the 7 means \qquad .
the 6 means \qquad .
2. Damian had $\$ 14.27$ in his savings account. He withdrew \$4.63. A month later, he deposited $\$ 7.75$. What is the new balance in his savings account?
\$
3. Mrs. Orta had $\$ 98.08$ in her savings account. She deposited $\$ 34.50$. A week later, she withdrew $\$ 23.25$. What is the new balance in her savings account?
\$ \qquad

Name: \qquad Date: \qquad Time: \qquad

Add or Subtract Decimals Using a Savings Account

1. Andre had $\$ 18.74$ in his savings account. Then he withdrew $\$ 10.29$ to buy a game. How much money does he have left?
\$ \qquad
2. Gerardo had $\$ 17.83$ in his piggy bank. Then his mother gave him $\$ 4.75$ for doing his weekly chores. He went to the store with his sister but forgot his money. He borrowed $\$ 20.00$ from her and spent it all. How much money will he have after he repays his sister?
\$ \qquad

Number model: \qquad
3. Mrs. Carmon had $\$ 97.72$ in her savings account. She withdrew $\$ 45.50$. A week later, she deposited $\$ 24.25$. What is the new balance in her savings account?

\$

\qquad

Write what you did to find the answer.

Fact Extension Practice with Number Grids

Use the Number Grid to help you solve the facts.

1. $3+8=$ \qquad
$13+8=$ \qquad
$43+8=$ \qquad
2. $11-6=$ \qquad
$21-6=$ \qquad
$51-6=$ \qquad
3. $13-7=$ \qquad
$33-7=$ \qquad
$83-7=$ \qquad
4. $9+4=$ \qquad
$39+4=$ \qquad
$79+4=$ \qquad
5. How does knowing a basic fact help you solve problems with larger numbers?
\qquad

Fact Extension Practice with Number Grids

1. Use a number grid to help you solve.

$$
22-6=
$$ $27+9=$ \qquad

$32-6=$ \qquad
$37+9=$ \qquad
$72-6=$ \qquad $97+9=$ \qquad
2. Use a number grid to help you solve.

$$
14-5=
$$

$$
5+3=
$$

\qquad

$$
140-50=
$$

$$
50+30=
$$

\qquad
$1,400-500=$ \qquad

$$
500+300=
$$

\qquad
3. Use a number grid to help you solve.
$21-4=$ \qquad $23+8=$ \qquad
$31-4=$ \qquad
$33+8=$ \qquad
$71-4=$ \qquad
$73+8=$ \qquad
\qquad

Number Grid (-9 to 110)

Estimate Differences with 2- and 3-Digit Numbers

Make a ballpark estimate. Write a number model to show your estimate.

Choose Your Algorithm

Use your favorite multiplication algorithm to find the following products. Show your work in the computation grid below or on a separate sheet of paper.
Example: $26 * 18=468$
2. $-\longrightarrow=24 * 186$
4. $=724 * 60$
6. $19 * 568=$

Name: \qquad Date: \qquad Time: \qquad

Choose Your Algorithm

Multiply. Use extra grid paper if needed.

1. a. $18 \times 24=$ \qquad
2. a. $192 \times 21=$ \qquad
b. \qquad $=42 \times 66$
b. \qquad $=17 \times 472$
3. a. $66 \times 876=$ \qquad b. \qquad $=888 \times 52$

Choose Your Algorithm

Use any multiplication algorithm you choose to solve the following problems. Show your work.

Example:		0.28	1.	0.47
		1.3		* 0.83
		364		

2. 19.6

* 3

3. 23.65

* 6

7. $\begin{array}{r}1.52 \\ * \quad 0.4 \\ \hline\end{array}$
8.

0.48
$\times \quad 25.2$

5. 0.21

* 28

6. 4.8

* 25

8. Select one problem. Explain your multiplication algorithm.
\qquad

Choose Your Algorithm

Use any multiplication algorithm you choose to solve the following problems. Show your work.

1. 1.4
$\begin{array}{r}1.8 \\ \times \quad 7.8 \\ \hline\end{array}$
2. 13.1
$\begin{array}{r}7 \\ \times \quad 7 \\ \hline\end{array}$
3. 0.79
24.3
$\times \quad$

Add or Subtract Using an Algorithm

Add or subtract mentally or with a paper-and-pencil algorithm.
Pay attention to the + and - symbols.
Example: $3.04+2.8=5.84$

1. $2.05+1.83=$ \qquad
2. $2.4+0.26+3.01=$
3. $2.31-1.88=$ \qquad
4. $18+2.9=$ \qquad 5. $2-0.67=$ \qquad

5. Choose one of the problems from above. Explain the method you used to solve the problem.
\qquad

Add or Subtract Using an Algorithm

1. Solve mentally or with a paper-and-pencil algorithm. $0.82+0.77=$ \qquad
2. Solve mentally or with a paper-and-pencil algorithm.

$$
\ldots=19.74+4.6
$$

3. Solve mentally or with a paper-and-pencil algorithm.

$$
\ldots=3.2-0.9
$$

\qquad
\qquad
\qquad

Add or Subtract Using an Algorithm

1. In the number 9.157 ,
the 1 means \qquad .
the 5 means \qquad .
the 7 means \qquad .
the 9 means \qquad .
2. Solve mentally or with a paper-andpencil algorithm.
\qquad

$$
=0.31+0.98
$$

2. There were 31 bottles of water. The class drank 18 bottles during lunch. How many bottles of water are left?
\qquad bottles

\square
Difference
Number model: \qquad
3. Add mentally or with a paper-andpencil algorithm.
$工=45.61+8.7$
4. Solve. Use a pencil-and-paper algorithm.
$3.6-0.7=$ \qquad
5. Explain which paper-and-pencil algorithm you used to solve Problem 5.

Discuss Strategies to Estimate Difference with 2-Digit and 3-Digit Numbers

Make a ballpark estimate. Write a number model to show your estimate. Then use any method to find the actual difference.

\qquad
\qquad
\qquad

Discussing U.S. Customary Units of Length

1. Write these units in order from smallest to largest: foot, yard, inch, mile.
\qquad
\qquad
\qquad
2. How many inches are in 1 foot?
\qquad inches

How many inches are in 1 yard?
\qquad inches

How many feet are in 1 yard?
\qquad feet
5. Would it make sense to measure the length of this room in inches?
\qquad
What would be a better unit?
2. Would it make sense to measure the distance to Atlanta, Georgia in inches?

What would be a better unit?
\qquad
4. What fraction of a yard is 1 foot?
\qquad yard

What fraction of a foot is 1 inch?
\qquad foot
6. Would it make more sense to measure the length of a room with a ruler, a yardstick, or a tape measure? Explain your answer.

Converting Units of Length

Find the equivalent measures.

1. a. $6 \mathrm{ft}=$ \qquad in.
b. 3 miles $=$ \qquad ft
c. $8 \mathrm{yd}=$ \qquad ft
d. $8 \mathrm{ft}=$ \qquad in.
e. 2 miles $=$ \qquad yd
f. $\quad 1 \frac{1}{2}$ miles $=$ \qquad yd
g. What do you do to convert from a larger unit to a smaller unit (such as from feet to inches)?
2. a. $24 \mathrm{ft}=$ \qquad yd
b. $10,560 \mathrm{ft}=$ \qquad miles
c. 48 in. $=$ \qquad ft
d. $300 \mathrm{ft}=$ \qquad yd
e. $5,280 \mathrm{yd}=$ \qquad miles
f. 120 in. $=$ \qquad ft
g. What do you do to convert from a smaller unit to a larger unit (such as from feet to yards)?

Choosing the Best Unit of Measure

All of the items below may be measured with any of the given units. Some units are best for measuring short distances, and some units are best for measuring long distances.

Decide which unit is best for each situation.
Circle the unit that you would use to measure each of them.

1. length of a soccer field
yard
foot inch
2. distance from Los Angeles, California, to Seattle, Washington inch foot mile
3. perimeter of your classroom
inch
foot
mile
4. height of your friend
yard
foot
mile
5. length of a car
inch
foot
mile
6. width of a book
inch
foot
yard

Understanding Outcomes

Spinner A

Spinner B

Spinner C

Write the letter of the spinner that best matches each statement below.
Example: Landing on blue is very unlikely.
Spinner \qquad

1. Landing on red is unlikely.

Spinner \qquad
2. Landing on yellow is very likely.

Spinner \qquad
3. Landing on blue is impossible.

Spinner \qquad
4. Landing on red is likely.

Spinner \qquad
5. Landing on blue is likely.
6. Landing on yellow or blue is certain.

Spinner \qquad
Spinner \qquad
Draw a spinner to match each statement. Tell how many outcomes are possible. Then explain your reasoning.
7. Landing on yellow is certain.

Number of possible outcomes: \qquad
\qquad
\qquad

8. Landing on blue is impossible.

Number of possible outcomes: \qquad

Explaining the Likelihood of Events

Circle the box that shows how likely the event is.

1. How likely is it that you will roll a sum greater than 2 with a pair of dice?

very unlikely	unlikely	likely	very likely

2. How likely is it that you will roll a sum of 2 with a pair of dice?

very unlikely	unlikely	likely	very likely

For Problems 3-5, think of a box of ABC blocks. Each block shows a different letter of the alphabet. You close your eyes and pick one of the 26 blocks.
3. \mathbf{a}. How likely is it that you pick the letter B?

very unlikely	unlikely	likely	very likely

b. Explain your answer.
4. How likely is it that you pick a vowel?

Hint: Vowels are the letters A, E, I, O, and U.

very unlikely	unlikely	likely	very likely

b. Explain your answer.
5. How likely is it that you will pick a consonant?

Hint: Consonants are all letters except A, E, I, O, and U.

very unlikely	unlikely	likely	very likely

b. Explain your answer.

